are in Table 1, bond lengths and angles in Table 2 and a view of the molecule is in Fig. 1.\*

Related literature. The structure has been determined as part of a study of the photochemistry of cyclohexenones (Zimmerman, Rieke & Scheffer, 1967; Schuster, 1980; Chen, Hwang, Scheffer & Trotter, 1991). An orthorhombic form is obtained from hexane solvent (Zimmerman & Zuraw, 1989).

\* Lists of positional parameters, bond lengths and angles, a stereoview of the molecule (Mo data), anisotropic thermal parameters, H-atom positions, torsion angles and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54502 (22 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CR0362]

We thank the Natural Sciences and Engineering Research Council of Canada for financial support, and the University of British Columbia Computing Centre for assistance.

#### References

- CHEN, J., HWANG, C., SCHEFFER, J. R. & TROTTER, J. (1991). Acta Cryst. C47, 2417-2419.
- Nowell, I. W., RETTIG, S. & TROTTER, J. (1972). J. Chem. Soc. Dalton Trans. pp. 2381–2388.
- SCHUSTER, D. I. (1980). Photochemical Rearrangements of Enones, Rearrangements in Ground and Excited States, Vol. 3, edited by P. DE MAYO, pp. 187–193. New York: Academic Press.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- ZIMMERMAN, H. E., RIEKE, R. D. & SCHEFFER, J. R. (1967). J. Am. Chem. Soc. 89, 2033–2047.

Acta Cryst. (1992). C48, 402-404

# Structure of [(1S)-1-[(1'S)-3'-Oxocyclohexyl]-3,3-dimethoxy-1-propyl] [(1S,2S,3R)-1,3,7,7-Tetramethyl-2-hydroxy-3-bicyclo[2.2.1]heptyl] Sulfone

By J. FENEAU-DUPONT AND J.-P. DECLERCQ

Laboratoire de chimie physique et de cristallographie, Université Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium

## AND C. HUART

Laboratoire de chimie organique de synthèse, Université Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium

(Received 10 April 1991; accepted 2 August 1991)

Abstract.  $C_{22}H_{38}O_6S$ ,  $M_r = 430.60$ , monoclinic,  $P2_1$ , a = 6.922 (2), b = 16.733 (2), c = 10.070 (3) Å,  $\beta =$ 96.88 (2)°, V = 1158.0 (4) Å<sup>3</sup>, Z = 2,  $D_x = 1.24 \text{ g cm}^{-3}$ , Cu K $\alpha$ ,  $\lambda = 1.54178$  Å,  $\mu = 14.9 \text{ cm}^{-1}$ , F(000) = 468, T = 291 K, R = 0.050 for 3558observed reflections. The development of methods for the construction of five-membered carbocycles is a topic of current interest as a result of the ubiquitous occurrence of such rings in many biologically active products. We have recently developed [De Lombaert, Nemery, Roekens, Carretero, Kimmel & Ghosez (1986). Tetrahedron Lett. 27, 5099-5102] a novel two-step (3+2) annulation yielding highly functionalized fused cyclopentanones. We are now developing an enantioselective version of this sequence. In this context we have studied the asymmetric Michael addition of a chiral homoenolate to cyclohexenone from which the title compound was obtained in an optically pure crystalline form. The

present X-ray crystallographic study establishes unambiguously the absolute stereochemistry of the title compound and the precursor homoenolate.

**Experimental.** Title compound prepared as shown below.



 $D_m$  not measured. Parallelepiped crystal with dimensions  $0.35 \times 0.4 \times 0.2$  mm. Lattice parameters refined using 18 reflections in the range  $10 \le 2\theta \le 49^\circ$ . Huber four-circle diffractometer and Rigaku rotating

0108-2701/92/020402-03\$03.00

© 1992 International Union of Crystallography

ZIMMERMAN, H. E. & ZURAW, M. J. (1989). J. Am. Chem. Soc. 111, 7974–7989.

| $U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$ |           |           |            |  |  |  |
|------------------------------------------------------------------------------------|-----------|-----------|------------|--|--|--|
|                                                                                    | x         | у         | Z          |  |  |  |
| 21                                                                                 | 10522 (5) | 6275 (2)  | 2975 (4)   |  |  |  |
| 22                                                                                 | 10034 (4) | 7014 (2)  | 2068 (4)   |  |  |  |
| 23                                                                                 | 8562 (5)  | 6665 (2)  | 899 (4)    |  |  |  |
| 24                                                                                 | 8145 (5)  | 5810 (2)  | 1452 (4)   |  |  |  |
| C5                                                                                 | 9870 (5)  | 5293 (2)  | 1166 (4)   |  |  |  |
| C6                                                                                 | 11551 (5) | 5665 (2)  | 2119 (4)   |  |  |  |
| 27                                                                                 | 8527 (5)  | 5876 (2)  | 2998 (4)   |  |  |  |
| 28                                                                                 | 8642 (7)  | 5045 (3)  | 3686 (5)   |  |  |  |
| <b>C9</b>                                                                          | 7094 (6)  | 6345 (3)  | 3757 (4)   |  |  |  |
| C10                                                                                | 11726 (6) | 6493 (3)  | 4275 (5)   |  |  |  |
| 211                                                                                | 9499 (6)  | 6686 (2)  | - 396 (4)  |  |  |  |
| D12                                                                                | 9291 (4)  | 7680 (2)  | 2734 (3)   |  |  |  |
| \$13                                                                               | 6213 (1)  | 7179      | 452 (1)    |  |  |  |
| D14                                                                                | 4986 (3)  | 7129 (2)  | 1484 (3)   |  |  |  |
| D15                                                                                | 5430 (4)  | 6833 (2)  | -817 (3)   |  |  |  |
| C1′                                                                                | 6733 (5)  | 8247 (2)  | 166 (3)    |  |  |  |
| C2'                                                                                | 5905 (6)  | 8516 (2)  | - 1244 (4) |  |  |  |
| C3′                                                                                | 6866 (7)  | 8216 (2)  | - 2400 (4) |  |  |  |
| C4′                                                                                | 3743 (5)  | 8874 (2)  | 1065 (4)   |  |  |  |
| C5′                                                                                | 5949 (4)  | 8752 (2)  | 1268 (4)   |  |  |  |
| C6′                                                                                | 6972 (5)  | 9564 (2)  | 1429 (4)   |  |  |  |
| C7'                                                                                | 6336 (6)  | 9994 (2)  | 2648 (4)   |  |  |  |
| C8′                                                                                | 4152 (6)  | 10078 (2) | 2608 (4)   |  |  |  |
| C9′                                                                                | 3076 (5)  | 9310 (2)  | 2237 (4)   |  |  |  |
| D10′                                                                               | 1776 (4)  | 9073 (2)  | 2811 (3)   |  |  |  |
| <b>31</b> 1′                                                                       | 8849 (5)  | 8370 (2)  | - 2187 (3) |  |  |  |
| C12′                                                                               | 9962 (9)  | 8011 (3)  | - 3121 (6) |  |  |  |
| D13′                                                                               | 6031 (6)  | 8640 (2)  | - 3546 (3) |  |  |  |
| C14′                                                                               | 5125 (11) | 8221 (5)  | - 4599 (6) |  |  |  |



Fig. 1. Stereoscopic view of the molecule with atom numbering.

anode, graphite-monochromatized Cu Ka radiation,  $\theta - \theta$  scan technique, 4172 independent reflections with  $\sin \theta / \lambda \le 0.60 \text{ Å}^{-1}$ ;  $-7 \le h \le 7, -20 \le k \le 20, 0$  $\leq l \leq 11$ ; 3558 with  $l \geq 2.5\sigma(l)$ . A standard reflection (042) was checked every 50 reflections, no significant deviation. Structure solved by direct methods using SHELXS86 (Sheldrick, 1985). H atoms in computed positions, except the hydroxyl group H atom, from Fourier difference synthesis. Anistropic least-squares refinement (SHELX76; Sheldrick, 1976) using F; H isotropic with common refined temperature factor (U $= 0.103 \text{ Å}^2$ ).  $w = 1/(\sigma^2 + 0.00050F^2)$ , R = 0.050, wR= 0.052. S = 1.83 for 3558 observed reflections. Final maximum shift/e.s.d. = 0.028. Maximum and minimum heights in final difference Fourier synthesis = 0.62 and  $-0.64 \text{ e} \text{ Å}^{-3}$ . Atomic scattering factors from International Tables for X-ray Crystallography

|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                                                                                        | 0 ( /                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $U_{eq}$ 61 (1)<br>56 (1)<br>57 (1)<br>61 (1)<br>69 (1)<br>66 (1)<br>65 (1)<br>86 (2)<br>78 (1)<br>84 (2)<br>72 (1)<br>69 (1)<br>69 (1) | $\begin{array}{c} C2-Cl\\ C7-Cl\\ C3-C2\\ C4-C3\\ Sl3-C3\\ C7-C4\\ C8-C7\\ 0l4-Sl3\\ Cl'-Sl3\\ $ | 1.550 (5)<br>1.537 (5)<br>1.573 (4)<br>1.847 (3)<br>1.552 (5)<br>1.551 (5)<br>1.422 (3)<br>1.852 (3)<br>1.544 (4)<br>1.388 (5)<br>1.530 (4)<br>1.532 (4)<br>1.514 (6)<br>1.194 (5)<br>1.360 (7) | $\begin{array}{c} C6 & -C1 \\ C10 & -C1 \\ 012 & -C2 \\ C11 & -C3 \\ C5 & -C4 \\ C6 & -C5 \\ C9 & -C7 \\ 015 & -S13 \\ C2' & -C1' \\ C3' & -C3' \\ C9' & -C4' \\ C7' & -C6' \\ C9' & -C8' \\ C12' & -011' \end{array}$ | 1.562 (5)<br>1.510 (5)<br>1.428 (4)<br>1.525 (5)<br>1.530 (5)<br>1.547 (5)<br>1.537 (5)<br>1.447 (3)<br>1.534 (5)<br>1.495 (6)<br>1.417 (5)<br>1.532 (5)<br>1.510 (5)<br>1.510 (5)<br>1.419 (5) |
| 60 (0)<br>75 (1)                                                                                                                        | C6C1C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 106.1 (3)                                                                                                                                                                                       | C7-C1-C2                                                                                                                                                                                                               | 102.9 (2)                                                                                                                                                                                       |
| 79(1)                                                                                                                                   | $C_{}C_{}C_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101.2 (3)                                                                                                                                                                                       | C10-C1-C2                                                                                                                                                                                                              | 112.2(3)<br>1197(3)                                                                                                                                                                             |
| 56 (1)                                                                                                                                  | $C_1 - C_1 - C_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 113.3(3)<br>102.7(2)                                                                                                                                                                            | 012 - 02 - 01                                                                                                                                                                                                          | 119.7(3)                                                                                                                                                                                        |
| 70 (1)                                                                                                                                  | 012 - 02 - 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 113.8 (2)                                                                                                                                                                                       | C4-C3-C2                                                                                                                                                                                                               | 101.7 (3)                                                                                                                                                                                       |
| 75 (1)                                                                                                                                  | C11 - C3 - C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.1(3)                                                                                                                                                                                        | $C_{11} - C_{3} - C_{4}$                                                                                                                                                                                               | 116.0 (3)                                                                                                                                                                                       |
| 64 (1)                                                                                                                                  | S13-C3-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118.8 (2)                                                                                                                                                                                       | \$13-C3-C4                                                                                                                                                                                                             | 108.4 (2)                                                                                                                                                                                       |
| 55 (1)                                                                                                                                  | \$13-C3-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 103.5 (2)                                                                                                                                                                                       | C5-C4-C3                                                                                                                                                                                                               | 105.5 (3)                                                                                                                                                                                       |
| 66 (1)                                                                                                                                  | C7-C4-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 105.9 (3)                                                                                                                                                                                       | C7—C4—C5                                                                                                                                                                                                               | 100.7 (3)                                                                                                                                                                                       |
| 78 (1)                                                                                                                                  | C6C5C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101.6 (3)                                                                                                                                                                                       | C5-C6-C1                                                                                                                                                                                                               | 104.3 (3)                                                                                                                                                                                       |
| 79 (1)                                                                                                                                  | C4C7C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93.5 (3)                                                                                                                                                                                        | C8—C7—C1                                                                                                                                                                                                               | 113.5 (3)                                                                                                                                                                                       |
| 66 (1)                                                                                                                                  | C8—C7—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 112.2 (3)                                                                                                                                                                                       | C9—C7—C1                                                                                                                                                                                                               | 114.9 (3)                                                                                                                                                                                       |
| 84 (1)                                                                                                                                  | C9C7C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.5 (3)                                                                                                                                                                                       | C9—C7—C8                                                                                                                                                                                                               | 103.7 (3)                                                                                                                                                                                       |
| 81 (1)                                                                                                                                  | O14-S13-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112.3 (2)                                                                                                                                                                                       | O15-S13-C3                                                                                                                                                                                                             | 104.7 (2)                                                                                                                                                                                       |
| 102 (2)                                                                                                                                 | O15-S13-O14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 115.4 (2)                                                                                                                                                                                       | C1' - S13 - C3                                                                                                                                                                                                         | 107.8 (1)                                                                                                                                                                                       |
| 109 (1)                                                                                                                                 | Cl'—S13—O14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.3 (2)                                                                                                                                                                                       | $C\Gamma = S13 = 015$                                                                                                                                                                                                  | 108.0 (2)                                                                                                                                                                                       |
| 131 (3)                                                                                                                                 | C2' - C1' - S13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111.6 (2)                                                                                                                                                                                       | $C_{2}$ $C_{1}$ $C_{2}$ $C_{1}$ $C_{1}$                                                                                                                                                                                | 109.0 (2)                                                                                                                                                                                       |
|                                                                                                                                         | $C_{3} = C_{1} = C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 112.3(3)                                                                                                                                                                                        | 013' - C3' - C3'                                                                                                                                                                                                       | 106.9 (3)                                                                                                                                                                                       |
|                                                                                                                                         | 011 - 03 - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0(3)                                                                                                                                                                                        | $C_{4'} - C_{4'} - C_{5'}$                                                                                                                                                                                             | 100.9(3)                                                                                                                                                                                        |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 107.4(3)<br>1141(3)                                                                                                                                                                             |                                                                                                                                                                                                                        | 111.3 (3)                                                                                                                                                                                       |
|                                                                                                                                         | $C_{4}^{-}$ $C_{5}^{-}$ $C_{4}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.7(3)                                                                                                                                                                                        | C7'-C6'-C5'                                                                                                                                                                                                            | 109.2 (3)                                                                                                                                                                                       |
|                                                                                                                                         | C8'-C7'-C6'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 113.8 (3)                                                                                                                                                                                       | C9′—C8′—C7′                                                                                                                                                                                                            | 112.9 (3)                                                                                                                                                                                       |
|                                                                                                                                         | C8'-C9'-C4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 114.7 (3)                                                                                                                                                                                       | O10′—C9′—C4′                                                                                                                                                                                                           | 122.5 (3)                                                                                                                                                                                       |
|                                                                                                                                         | 010'-C9'-C8'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 122.8 (4)                                                                                                                                                                                       | C12'-O11'-C3'                                                                                                                                                                                                          | 115.1 (4)                                                                                                                                                                                       |
| 013                                                                                                                                     | C14'-013'-C3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 118.8 (4)                                                                                                                                                                                       |                                                                                                                                                                                                                        |                                                                                                                                                                                                 |

(1974, Vol. IV). At the end of the refinement, the 1652 Friedel pairs of reflections present in the data set were sorted according to  $w^{1/2}||F_c(hkl)| =$  $|F_c(h\bar{k}\bar{l})||$ , by decreasing magnitude. Among the first 200 pairs of reflections, the signs of 193 observed differences were consistent with the signs of the corresponding calculated differences, establishing that the molecule is described with the correct absolute configuration. The atomic parameters are given in Table 1.\* Fig. 1 is a stereoscopic view of the molecule, showing the numbering of the atoms (PLUTO; Motherwell & Clegg, 1978). Bond distances and angles are given in Table 2.

Related literature. The structures of (2S,3R)-exo-3propylsulfonyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-

Table 2. Bond distances (Å) and bond angles (°)

<sup>\*</sup> Lists of structure factors, anisotropic thermal parameters, H-atom parameters and bond lengths and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54488 (24 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA0072]

ol and (2S,3R)-exo-3-propylsulfonyl-1,3,7,7-tetramethylbicyclo[2.2.1]heptan-2-ol (Declercq, Feneau-Dupont, Huart & Nemery, 1991, and references cited therein) are closely related to the title compound.

#### References

DECLERCQ, J.-P., FENEAU-DUPONT, J., HUART, C. & NEMERY, I. (1991). Acta Cryst. C47, 2234–2236.

- DE LOMBAERT, S., NEMERY, I., ROEKENS, B., CARRETERO, J. C., KIMMEL, T. & GHOSEZ, L. (1986). Tetrahedron Lett. 27, 5099-5102.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. SHELDRICK, C. KRUGER & R. GODDARD, pp. 175-189. Oxford Univ. Press.

Acta Cryst. (1992). C48, 404-406

## N-{2-[(1-Cyanocyclohexyl)(*tert*-butyldimethylsilyloxy)amino]propionyl}-2,5-bis(methoxymethyl)pyrrolidine and N-(2-Anilinopropionyl)-2,5-bis(methoxymethyl)pyrrolidine

### BY B. TINANT AND J.-P. DECLERCQ

Laboratoire de chimie physique et de cristallographie, Université Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium

## AND P. HENDERSON

Laboratoire de chimie organique de synthèse, Unversité Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium

(Received 4 July 1991; accepted 2 August 1991)

Abstract. (1):  $C_{24}H_{45}N_3O_4Si$ ,  $M_r = 467.73$ , monoclinic,  $P2_1/c$ , a = 12.947 (3), b = 13.814 (4), c =16.186 (5) Å,  $\beta = 108.61$  (3)°, V = 2744 (1) Å<sup>3</sup>, Z =4,  $D_x = 1.13 \text{ g cm}^{-3}$ , Cu K $\alpha$ ,  $\lambda = 1.5418 \text{ Å}$ ,  $\mu =$  $9.90 \text{ cm}^{-1}$ , F(000) = 1024, T = 291 K, R = 0.058 for4276 observed reflections. (2):  $C_{17}H_{26}N_2O_3$ ,  $M_r =$ 306.41, monoclinic,  $P2_1/c$ , a = 9.579(2), b =9.601 (1), c = 18.826 (2) Å,  $\beta = 103.25$  (2)°, V =1685.3 (4) Å<sup>3</sup>, Z = 4,  $D_x = 1.21$  g cm<sup>-3</sup>, Mo K $\alpha$ ,  $\lambda =$  $0.71069 \text{ Å}, \mu = 0.89 \text{ cm}^{-1}, F(000) = 664, T = 291 \text{ K},$ R = 0.042 for 2361 observed reflections. The relative configuration of the propionyl asymmetric carbon is inverse with respect to that of the pyrrolidine ring carbon atoms (*i.e.* one is R and the other S). The conformation of the pyrrolidine is different in the two compounds: in (1), it is an envelope with torsion angles of 23.0 (6), -36.0 (6), 36.5 (6), -22.2 (6) and  $0.0(6)^{\circ}$ ; in (2), it adopts a half-chair conformation with the twofold axis through N, the endocyclic torsion angles being 8.8(5), -27.7(5), 36.5(5), -30.3(5) and  $13.4(5)^{\circ}$ . In (2), an intermolecular hydrogen bond between the N-H and the carbonyl O is observed: N-H···O, N···O = 3.098 (3), H···O = 2.24 (2) Å, N—H···O = 175 (1)° (O: 1 - x, -y, 1 - z).

**Experimental.** Crystals were obtained by evaporation from pentane-methanol, 1:1, for (1) and from hexane for (2).  $D_m$  not measured. Lattice parameters refined using 20 reflections in the range  $5 \le 2\theta \le 50^{\circ}$  for (1) and 30 reflections in the range  $5 \le 2\theta \le 25^{\circ}$  for (2). Huber four-circle diffractometer, mono-chromatized Cu  $K\alpha$  for (1), Mo  $K\alpha$  radiation for (2).



0108-2701/92/020404-03\$03.00

© 1992 International Union of Crystallography

## 404